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Abstract The primary objective of this article is to demonstrate that Rayleigh’s quotient and its variants retain
the usual properties of boundedness and stationarity even when the linear vibratory system is non-classically
damped, extending previously accepted results that these quotients could attain stationarity when damping was
proportional or the modal damping matrix was diagonally dominant. This conclusion is reached by allowing
the quotients to be defined in complex space and using complex differentiation. A secondary objective is to
show how these quotients and their associated eigenvalue problems can be combined to generate bounds on the
system’s eigenvalues, an immediate consequence that follows from establishing boundedness and stationarity
in complex space. The reported bounds are simple to compute and appear to be tighter than previous bounds
reported in the literature.

Keywords Linear dynamical systems · Damping · Rayleigh’s quotient · Rayleigh’s principle · Eigenvalue
bounds

1 Introduction

The equation of motion of linear systems is one of the most commonly used equations in science and engineer-
ing. Of particular significance in the study of linear vibrations and structural dynamics is the class of passive
systems characterized by three symmetric and positive-definite matrices, i.e., the mass, damping, and stiffness
matrices. For brevity, this class of systems will be referred to as damped linear systems.

It is customary to analyze a linear system with the proportion between potential and kinetic energies; a
ratio that involves the stiffness and mass matrices is termed as Rayleigh’s quotient. In real space, this function
has been shown to be bounded by the lowest and highest natural frequencies, and it attains a stationary value
at each real mode shape. In a sufficiently small neighborhood of a stationary point, Rayleigh’s quotient does
not vary significantly and there is loss of sensitivity. This set of properties drives the application of Rayleigh’s
quotient in various fields of science and engineering. For example, Rayleigh’s quotient plays a central role in
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the characterization of natural frequencies of linear systems [1,2]. In addition, it is the foundation of iterative
processes to determine numerical solutions for classes of eigenvalue problems [3,4].

In the presence of viscous damping, Phani and Adhikari [5] showed that a dissipative system is also
associated with two other Rayleigh-like quotients, each involving the damping matrix and either the stiffness
or mass matrix as well. For simplicity, all three variants of quotients will be referred to as Rayleigh’s quotients.
In their article, the authors showed that these quotients attain stationarity if the system is proportionally damped.
In the case of a non-proportionally damped system, they were able to show that the two quotients involving the
dampingmatrix have stationary points if themodal dampingmatrix is diagonally dominant. Because, in general,
a damped linear system does not possess real normal modes, i.e., the system’s eigenvectors do not coincide
with the normal modes, their derivation was based on a first-order approximation of the complex modes by
the undamped modes [6]. Since the system’s eigenvectors are often complex, any further investigation of the
properties of Rayleigh’s quotients would require full consideration of complex input vectors. In view of this,
the primary objective of this article is to completely establish the properties of stationarity and boundedness
of Rayleigh’s quotients for damped linear systems using complex algebra. The use of complex differentiation
allows the analysis to bypass the usual assumptions of proportional damping or diagonal dominance.

The secondary objective is to demonstrate that these quotients lead rather intuitively to geometrical bounds
in the complex plane for the system eigenvalues, which is an immediate consequence of establishing the
boundedness property of the Rayleigh’s quotients in complex space. Estimates on the location of eigenvalues
are important in design, modeling, and simulation, especially for large structural systems. For example, the
range of the real parts of the system eigenvalues is of important consideration in numerical simulation because
they offer an approximation of the stiffness of the differential equations. Similarly, the spread of the imaginary
parts represents the frequency interval for which an external excitation may induce resonance [7]. Eigenvalue
bounds may also be used in the design of active vibration controllers [8] and to predict response bounds [9,10].

Other researchers have reported on eigenvalue bounds for linear systems [7,8,11–13]. The Gershgorin
theorem has been used [11,13] in order to compute a circle in the complex plane enclosing the system eigen-
values. Lancaster [11] also used perturbation theory to compute tighter bounds for the real and imaginary part
of system eigenvalues. Nicholson and Inman [12] used the Cauchy–Schwarz inequality to derive a rectangle
in the complex plane containing the system eigenvalues. Later, Nicholson [7] obtained sharper bounds using
a modified state vector dependent on a parameter. However, bounds derived herein appear to be tighter than
these previously reported bounds and, most importantly, are appreciably more simple to compute.

The organization of this paper is as follows. A concise review of conservative (i.e., undamped) systems and
the classical Rayleigh’s quotient is presented in Sect. 2 to establish mathematical preliminaries for subsequent
analysis. Stationarity and boundedness of Rayleigh’s quotients for dissipative systems are demonstrated in
Sect. 3. It is then shown in Sect. 4 how these quotients can be used to obtain both established and novel bounds
for the eigenvalues of a damped linear system. An illustrative example is provided in Sect. 5 to demonstrate
the findings herein and compare them to prior results. The paper closes with a summary of the main findings
in Sect. 6.

2 Conservative systems

To provide the necessary mathematical background before discussing Rayleigh-like quotients for damped
linear systems, a brief review of undamped systems and the classical Rayleigh’s quotient is given here.

2.1 The equation of motion and its spectral properties

The equation of motion of an n-degree-of-freedom conservative linear system can be written as

Mq̈+Kq = 0, (1)

whereM and K are n × n real, symmetric, and positive-definite matrices; they are referred to as the mass and
stiffness matrices, respectively. The n-dimensional vector q contains the n generalized coordinates describing
the behavior of system (1).

Associated with Eq. (1) is the generalized eigenvalue problem

(K − ω2M)u = 0 (2)
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with eigenvalue ω2 and n-dimensional eigenvector u. Owing to symmetry and positive definiteness of M and
K, all eigenvalues ω2

j ( j = 1, 2, . . . , n) are real and positive, and the corresponding eigenvectors u j are real
and linearly independent [4]. The eigenvectors u j are mode shapes andω2

j are the square of natural frequencies
of vibration. By convention, the natural frequencies ω j are arranged in order of increasing magnitude: 0 <
ω1 ≤ ω2 ≤ . . . ≤ ωn . The mode shapes are orthogonal with respect toM and K, and they can be normalized,
for convenience, with respect toM so that

uTjMuk = δ jk, uTjKuk = δ jkω
2
j , (3)

where δ jk = 0 for j $= k and δ jk = 1 for j = k. In such case, the mode shapes are said to be mass normalized.
It should be noted that the conditions in Eq. (3) hold whether or not there are repeated eigenvalues [14].

2.2 The classical Rayleigh’s quotient

Rayleigh’s quotient is commonly defined as the ratio between the potential and kinetic energies of system (1):

R(x) = xTKx
xTMx

, (4)

where x is an n-dimensional real vector. This function is well-defined for any x $= 0 due to positive definiteness
ofM. It is clear from Eqs. (3) and (4) that if the quotient is evaluated at a mode shape u j , then

R(u j ) = ω2
j . (5)

The classical Rayleigh’s principle states that in real space, Rayleigh’s quotient (4) attains a stationary value
at each mode shape and is bounded by the square of the lowest and highest natural frequencies of system (1).
The proofs for stationarity and boundedness of Rayleigh’s quotient are standard in engineering literature, but
they are repeated here because the subsequent derivation for quotients associated with dissipative systems will
follow a similar strategy.

2.2.1 Stationarity

Starting with stationarity, define the derivative of a multivariate scalar function F with respect to a real n-
dimensional vector x = [x1 x2 · · · xn]T as

∂F
∂x

=
[

∂F
∂x1

∂F
∂x2

· · · ∂F
∂xn

]T
. (6)

Rayleigh’s quotient has a stationary value at x if

∂R
∂x

= 0. (7)

Since
∂R
∂x

= 2
xTMx

(K − R(x)M) x, (8)

Eqs. (2), (3), (5), and (8) imply

∂

∂x
R(u j ) =

2

uTjMu j

(
K − ω2

jM
)
u j = 0. (9)

Therefore, R(x) attains a stationary value at each mode shape u j . A stationary point may be a minimum, a
maximum, or a saddle point.
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2.2.2 Boundedness

Next, to demonstrate boundedness, one can start by using modal expansion to express any nonzero x as

x =
n∑

j=1

c ju j , (10)

where c j are real scalar coefficients. This implies, from Eqs. (4) and (5) that

R(x) =

n∑
j=1

c2jω
2
j

n∑
j=1

c2j

. (11)

Rewrite Eq. (11) as [1]

R(x) = ω2
1

n∑
j=1

c2j

(
ω j

ω1

)2

∑n
j=1 c

2
j

. (12)

The numerator of Eq. (12) is greater than the denominator, which means R(x) ≥ ω2
1, and thus Rayleigh’s

quotient attains, in real space, a global minimum at the first mode shape u1. Similarly, Eq. (11) can be written
as

R(x) = ω2
n

n∑
j=1

c2j

(
ω j

ωn

)2

∑n
j=1 c

2
j

, (13)

in which case the numerator is smaller than the denominator, and so R(x) ≤ ω2
n . Therefore, Rayleigh’s quotient

is bounded by the square of the lowest and highest natural frequencies:

ω2
1 ≤ R(x) ≤ ω2

n. (14)

3 Dissipative systems

Damped linear systems and their associated Rayleigh-like quotients are next investigated.

3.1 The equation of motion and its spectral properties

An n-degree-of-freedom damped linear system has the equation of motion

Mq̈+ Cq̇+Kq = 0, (15)

where C is the n× n real, symmetric, and positive-definite damping matrix. In this case, Eq. (15) is associated
with the quadratic eigenvalue problem

(Mλ2 + Cλ +K)v = 0 (16)

with eigenvalue λ and n-dimensional eigenvector v, which are generally complex. Solution of Eq. (16) yields
2n eigenvalues λ j ( j = 1, 2, . . . , 2n) and their corresponding eigenvectors v j , which can only be determined
up to an arbitrary scalar multiplier. The spectrum of a damped linear system (15) is composed of negative real
eigenvalues, associated with exponential decay of the response, and complex conjugate eigenvalues, whose
negative real part is a rate of decay and whose imaginary part is a damped frequency of vibration [15]. The
real eigenvalues can always have real eigenvectors associated with them.
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3.2 Rayleigh’s quotients

The dissipative system (15) is associated with three Rayleigh-like quotients [5]

RAB(z) =
z∗Az
z∗Bz

(17)

formed by replacing the n × n real, symmetric, and positive-definite matrices A and B with some selection
of the system matrices M, C, and K. For simplicity, quotients of the form in Eq. (17) will be referred to as
Rayleigh’s quotients. Because the eigenvectors of Eq. (16) are generally complex, the quotients in Eq. (17) are
functions of n-dimensional complex vectors z $= 0, where z∗ = z̄T denotes the complex conjugate transpose.
While z may be complex, the quotient RAB is real.

Associated with each Rayleigh’s quotient (17) is the generalized eigenvalue problem

(A+ µABB)wAB = 0 (18)

with eigenvalue µAB and n-dimensional eigenvector wAB. Similar to the eigenvalue problem (2), because
both A and B are symmetric and positive definite, −µAB

j ( j = 1, 2, . . . , n) are all real and positive. Thus, all
eigenvalues µAB

j are negative real numbers, and they can be arranged for convenience in order of increasing
magnitude: 0 ≤ |µAB

1 | ≤ |µAB
2 | ≤ . . . ≤ |µAB

n |. Moreover, the corresponding eigenvectors wAB
j are real,

linearly independent, and orthogonal with respect to both A and B:

(wAB
j )TBwAB

k = δ jk, (wAB
j )TAwAB

k = δ jk |µAB
j |, (19)

where wAB
j have been normalized with respect to B for convenience. Consequently, by examining Eq. (18) for

the j th eigensolution, pre-multiplying by (wAB
j )∗ = (wAB

j )T, and rearranging, it can be shown that

(wAB
j )TAwAB

j

(wAB
j )TBwAB

j

= RAB(wAB
j ) = −µAB

j = |µAB
j |. (20)

The properties of stationarity and boundedness of the Rayleigh’s quotients (17) will now be derived. It
should be emphasized that the only restrictions on the real n × n matrices A and B are that they are symmetric
and positive definite.

3.2.1 Stationarity

To prove stationarity of RAB(z), complex differentiation is needed. Firstly, note that any complex vector z
can be expressed in rectangular form as z = x + iy, where x and y are n-dimensional real vectors, and so
RAB(z) = RAB(x, y). The multivariate real-valued function RAB(x, y) attains a stationary value when [16]

∂R
∂x

= ∂R
∂y

= 0. (21)

Because z∗Pz = xTPx + yTPy for a real symmetric matrix P, it follows that

∂

∂x
(z∗Pz) = ∂

∂x
(xTPx) = 2Px,

∂

∂y
(z∗Pz) = ∂

∂y
(yTPy) = 2Py.

(22)

Consequently,
∂

∂x
RAB(z) =

2
z∗Bz

(A − RAB(z)B) x,

∂

∂y
RAB(z) =

2
z∗Bz

(A − RAB(z)B) y.
(23)
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Finally, if x = wAB
j and y = 0 so that z = wAB

j , then

∂

∂x
RAB(wAB

j + i0) = ∂

∂y
RAB(wAB

j + i0) = 0. (24)

Therefore, z = wAB
j is a critical point of RAB(z). In contrast with the work of Phani and Adhikari [5], this

result does not require an assumption that the modal damping matrix (i.e., the damping matrix transformed by
the real normal modes u j ) be diagonally dominant.

Note that other critical points such as iwAB
j and wAB

j + iwAB
j = (1+ i)wAB

j lie in the subspace generated
by the real eigenvectorwAB

j . In particular, consider complex vectors of the form z = x+ iy = wAB
j eiθ j so that

x = wAB
j cos θ j and y = wAB

j sin θ j . It can be verified that RAB(wAB
j eiθ j ) = |µAB

j |, which means

∂

∂x
RAB(wAB

j eiθ j ) = ∂

∂y
RAB(wAB

j eiθ j ) = 0. (25)

Consequently, the circle z = wAB
j eiθ j in complex space is a continuous locus of critical points, along which

RAB(wAB
j eiθ j ) = |µAB

j | is constant. These circles are level curves of RAB(z). When A = K and B = M, the
quotient RKM(z) is equivalent to the traditional Rayleigh’s quotient (4) but defined on a complex domain, and
thus the classical result that Rayleigh’s quotient attains a global minimum at the first normal mode z = u1 is
correct in real space only.

3.2.2 Boundedness

To demonstrate boundedness of RAB(z) in complex space, begin by expressing the complex vector z as a linear
combination of the real eigenvectors wAB

j :

z =
n∑

j=1

c jwAB
j , (26)

where the coefficients c j are complex. As a result, from Eqs. (17) and (19),

RAB(z) =

n∑
j=1

|c j |2|µAB
j |

n∑
j=1

|c j |2
, (27)

and so, by the same processes outlined in Sect. 2.2.2, the Rayleigh’s quotients (17) are bounded by the smallest
and largest eigenvalues, in magnitude, of their associated eigenvalue problem (18):

|µAB
1 | ≤ RAB(z) ≤ |µAB

n |. (28)

4 Rayleigh’s quotients and eigenvalue bounds

Interestingly, the boundedness property of the Rayleigh’s quotients (17) can be used to obtain simple bounds
for the eigenvalues of system (15) rather intuitively. Bounds for complex eigenvalues are considered first,
followed by an investigation into bounds for real eigenvalues.
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4.1 Bounds for complex eigenvalues

Suppose λ j is a complex eigenvalue of the quadratic eigenvalue problem (16). Pre-multiplying Eq. (16) by the
conjugate transpose v∗

j yields

v∗
jMvλ2j + v∗

jCvλ j + v∗
jKv = 0. (29)

If the conjugate transpose of Eq. (29) is taken, then one obtains

v∗
jMv j λ̄

2
j + v∗

jCv j λ̄ j + v∗
jKv j = 0 (30)

because the coefficient matrices are real and symmetric. Therefore, the complex conjugate pair (λ j , λ̄ j ) are
the roots of

v∗
jMv jλ

2 + v∗
jCv jλ + v∗

jKv j = 0, (31)

and so

λ j , λ̄ j =
−v∗

jCv j ±
√
(v∗

jCv j )2 − 4(v∗
jMv j )(v∗

jKv j )

2v∗
jMv j

, (32)

where (v∗
jCv j )

2 − 4(v∗
jMv j )(v∗

jKv j ) < 0. Alternatively, in terms of the Rayleigh’s quotients (17),

λ j , λ̄ j = − RCM(v j )

2
± i

√
RKM(v j )

√

1 − RCM(v j )

4RKC(v j )
. (33)

4.1.1 An annular region in the complex plane

From Eq. (32), it can be shown that the product of a complex conjugate pair of eigenvalues is directly related
to the quotient RKM(z):

λ j λ̄ j = |λ j |2 =
v∗
jKv j

v∗
jMv j

= RKM(v j ) = RKM(v̄ j ). (34)

Comparing the eigenvalue problems (2) and (18), it is clear that µKM
j = −ω2

j , and so it follows from Eq. (28)
that

ω1 ≤ |λ j | ≤ ωn. (35)

In words, Eq. (35) defines an annular region in the complex plane in which all complex eigenvaluesmust reside,
where the inner and outer radii are given by the lowest and highest natural frequencies of system (15). This
result is surprising and remarkable because the quotient RKM(z) is defined without recourse to the damping
matrix C, but when evaluated at a complex eigenvector v j of the quadratic eigenvalue problem (16), RKM(v j )
is connected with the associated complex eigenvalue λ j .

On a final note, the result in Eq. (35) is not new. The bounds in Eq. (35) were previously obtained by
Lancaster using perturbation theory [11], but the novel methodology presented here is more intuitive and
elementary because it follows directly from the well-established concepts presented in Sects. 2 and 3.

4.1.2 A rectangular region in the complex plane

Upon further examination of Eq. (33), it is possible to obtain another set of simple bounds on the complex
eigenvalues. Starting with the real part of the eigenvalues, from Eq. (33),

Re(λ j ) = − RCM(v j )

2
< 0. (36)

Thus, Eq. (28) implies
µCM
n

2
≤ Re(λ j ) ≤ µCM

1

2
. (37)

As with Eq. (35), this result is not new and appears in Nicholson’s work [7], but the simplicity by which it
follows from the boundedness property of the Rayleigh’s quotients (17) is noteworthy.
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A previously unreported bound for the imaginary parts of the complex eigenvalues is now presented. First,
define the ratio

x = RCM(v j )

4RKC(v j )
(38)

so that the imaginary part of Eq. (33), in magnitude, can be written as

∣∣Im(λ j )
∣∣ =

√
RKM(v j )

√
1 − x . (39)

Note that 0 < x < 1 because
√
1 − x must be real, and so

√
1 − x may be expanded as a binomial series [17]:

√
1 − x = 1 − x

2
− x2

8
− x3

16
+ · · · . (40)

The upper bound on
∣∣Im(λ j )

∣∣ in Eq. (39) is approached when x → 0. Thus, considering very small x (i.e.,
0 < x ) 1), the series for

√
1 − x in Eq. (40) can be approximated well by neglecting all terms with powers

of x greater than 1, resulting in √
1 − x < 1 − x

2
. (41)

Consequently,

0 <
∣∣Im(λ j )

∣∣ <
√
RKM(v j )

(
1 − RCM(v j )

8RKC(v j )

)
, (42)

and hence, by Eq. (28),

0 <
∣∣Im(λ j )

∣∣ < ωn

(

1 − µCM
1

8µKC
n

)

. (43)

Numerical simulations suggest that these bounds on the imaginary parts of the complex eigenvalues are tighter
than those reported by Nicholson [7]. This may in part be due to the use of the extreme eigenvalue µKC

n of the
eigenvalue problem (18) involving A = K and B = C, which Nicholson does not consider.

When taken together, Eqs. (37) and (39) define a rectangular region in the complex plane containing the
complex eigenvalues. The intersection of this rectangular region and the annular region discussed in Sect.
4.1.1 yields a more refined result at little additional computational cost; calculation of extreme eigenvalues for
large systems may be efficiently achieved using computational packages that can return only the smallest and
largest eigenvalues, such as eigs in Matlab.

4.2 Bounds for real eigenvalues

TheRayleigh’s quotients (17)will nowbe used to develop previously unreported bounds for the real eigenvalues
of system (15). Recall that complex eigenvalues of the quadratic eigenvalue problem (16) occur in conjugate
pairs and thus they are both roots of Eq. (31). This is not the case for real eigenvalues. If λ j is a real eigenvalue
of Eq. (16) with real eigenvector v j , then, analogous to Eq. (31), it is one of the roots of

vTjMv jλ
2 + vTjCv jλ + vTjKv j = 0. (44)

The other root of Eq. (44), say ρ j , is generally not an eigenvalue unless λ j is a repeated real eigenvalue. From
Eq. (44), both λ j and ρ j can be expressed as

λ j , ρ j =
−vTjCv j ±

√
(vTjCv j )2 − 4(vTjMv j )(vTjKv j )

2vTjMv j
, (45)

where (vTjCv j )
2 − 4(vTjMv j )(vTjKv j ) > 0. Rewriting Eq. (45) in terms of the Rayleigh’s quotients (17),

λ j , ρ j = − RCM(v j )

2

(

1 ∓
√

1 − 4RKC(v j )

RCM(v j )

)

. (46)
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Similar to the process in Sect. 4.1.2, define the ratio

y = 4RKC(v j )

RCM(v j )
, (47)

where 0 < y < 1 because the real eigenvalues λ j are strictly negative, and so Eq. (46) becomes

λ j , ρ j = − RCM(v j )

2

(
1 ∓

√
1 − y

)
. (48)

The extremes of Eq. (48), and thus the upper and lower bounds for λ j , are approached as y → 0, and so
Eq. (48) will be examined with very small y (i.e., 0 < y ) 1). Consequently, as in Eq. (41),

√
1 − y will be

approximated at the extremes of Eq. (48) by a truncated binomial series:
√
1 − y < 1 − y

2
. (49)

Equations (47)–(49) and applying Eq. (28) reveal that an upper bound for λ j is such that

λ j < − RCM(v j )

2

(
1 −

√
1 − y

)

< − RCM(v j )

2

( y
2

)

< RKC(v j )

< µKC
1 .

(50)

Likewise, for a lower bound on λ j ,

λ j > − RCM(v j )

2

(
1+

√
1 − y

)

> − RCM(v j )

2

(
2 − y

2

)

> RCM(v j ) − RKC(v j )

> µCM
n − µKC

1 .

(51)

Therefore, by combining Eqs. (50) and (51), every real eigenvalue λ j of Eq. (16) is bounded as follows:

µCM
n − µKC

1 < λ j < µKC
1 . (52)

As with Eq. (43), the novel bounds in Eq. (52) for the real eigenvalues of system (15) seem to be tighter
than those given by Nicholson [7] based on numerical simulations. Again, these bounds feature an extreme
eigenvalue (in this case, µKC

1 ) not present in Nicholson’s work.

5 An illustrative example

Consider a system of the form (15) with coefficientsM = I and

C =





4 1 −2 0
1 4 1 −1

−2 1 6 0
0 −1 0 4



 , K =





10 6 −3 −5
6 10 −2 −5

−3 −2 6 0
−5 −5 0 8



 .

This system is neither proportionally damped nor, more generally, classically damped (i.e., CM−1K $=
KM−1C [18]).

Solving the associated quadratic eigenvalue problem (16) reveals that the system possesses two complex
conjugate pairs of eigenvalues: λ1, λ̄1 = −2.7506 ± 3.5643i and λ2, λ̄2 = −0.9116 ± 1.8370i . From the
undamped eigenproblem (2), the system’s lowest and highest natural frequencies are, respectively,ω1 = 1.6147
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Fig. 1 Location in the complex plane of the real (Filled black circle) and complex (Filled blue square) eigenvalues of the damped
linear system in the example of Sect. 5. The annular region containing the complex eigenvalues is delimited by filled black dotted
lines, the rectangular region containing the complex eigenvalues is denoted by filled green dotted lines, and the intersection of
these two regions is shaded. Each segment filled red dotted lines identifies the lower and upper bounds for the real eigenvalues.
Color figure online

and ω4 = 4.5569. Since |λ1| = 4.5022 and |λ2| = 2.0507, it can be seen that the complex eigenvalues are
indeed bounded, in magnitude, by the annular region in the complex plane defined in Eq. (35):

1.6147 ≤ |λ1|, |λ2| ≤ 4.5569.

Solution of the eigenvalue problem (18) with A = C and B = M yields the extreme eigenvalues µCM
1 =

−1.7226 and µCM
4 = −7.2774, while solving the eigenvalue problem (18) with A = K and B = C gives

µKC
1 = −0.6523 and µKC

4 = −3.8267. It can then be verified that the real and imaginary parts of the complex
eigenvalues are in fact bounded by the rectangular region in the complex plane formed by Eqs. (37) and (43).
Specifically, for the real parts,

−3.6387 ≤ Re(λ1), Re(λ2) ≤ −0.8613,

and for the imaginary parts,
0 < |Im(λ1)|, |Im(λ2)| ≤ 4.3005.

The four remaining systemeigenvalues are real anddistinct:λ3 = −6.1359,λ4 = −2.0130,λ5 = −1.7483,
and λ6 = −0.7785. Because this system is not classically damped, it can be verified that the roots ρ j of Eq. (44)
are not eigenvalues of this system. For example,

vT5Mv5λ2 + vT5Cv5λ + vT5Kv5 = 0

has roots λ5 = −1.7483 and ρ5 = −2.0500, the latter of which is not an eigenvalue of the system.Additionally,
it can be checked that all real eigenvalues are indeed bounded according to Eq. (52):

−6.6252 < λ3, λ4, λ5, λ6 < −0.6523.

The location of the system eigenvalues in the complex plane and their computed bounds are shown in Fig. 1.
For comparison purposes, it is possible to compute the sharpest classical bounds, which have been reported

by Nicholson [7]:
−6.8995 < Re(λ1), Re(λ2), λ3, λ4, λ5, λ6 < −0.3779

and
0 < |Im(λ1)|, |Im(λ2)| ≤ 4.5008.

These bounds are less restrictive than the bounds computed by the methodology developed herein.
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6 Conclusions

The major results presented in this paper, which are applicable to damped linear systems, are summarized in
the following statements.

1. It was proved that the three variants of Rayleigh’s quotient (17) for dissipative systems attain a stationary
value at the eigenvectors of their respective generalized eigenvalue problems (18) and are also bounded by
the corresponding smallest and largest eigenvalues. Contrary to popular beliefs, these results were shown
to be true even when the system is non-classically damped.

2. It was demonstrated that the boundedness property of the Rayleigh’s quotients (17) is immediately useful
for developing simple bounds for the eigenvalues of dissipative systems, some of which appear to be tighter
than those previously reported. An annular region in Eq. (35), delimited by the lowest and highest natural
frequencies, and a rectangular region, given by Eqs. (37) and (43), containing the complex eigenvalues
were determined. Likewise, it was shown that the real eigenvalues are bounded by Eq. (52). Some of these
bounds are novel because they use previously unincorporated extreme eigenvalues, while other results exist
in the literature but were obtained here by a simpler and more intuitive approach.
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